Archives for energy storage

The rise of electric buses

Cities and urban environments will see some of the greatest benefits of the electric vehicle revolution. As combustion engines are replaced with electric drivetrains, exhaust emissions will drop dramatically, air will become cleaner and safer, streets will become quieter and calmer.

 

Battery-powered electric vehicles are clearly key to this future – the technology is widely acknowledged to carry the largest potential reduction in greenhouse gas emissions, with life-cycle emissions of a vehicle using electricity generated from renewable sources up to 90% lower than an equivalent internal combustion engine vehicle according to the IEA.

 

While electric passenger vehicles provide increasingly common examples of this technology in motion, this isn’t the only sector where battery technology is going to make a difference.

 

Municipal vehicles and public transport are in many cases well suited to electric propulsion by battery-powered drivetrains too; particular so when vehicles are operating with frequent stops along highly predictable routes since these circumstances are ideal for battery charging.

 

With battery performance steadily improving, system costs reducing and increasingly widespread regulation pushing for clean transportation, the switch to batteries is becoming the favored direction for most sectors of road transportation.

 

It’s a welcome situation.

 

Transport sectors have failed to see emissions reductions as have been evident in other sectors over recent years, and road transport emissions are in fact increasing.

 

The European Environment Agency reported that having grown since 2014, road transport in the EU in 2018 accounted for 82% of the transport GHG emissions and one fifth of the EU’s total GHG emissions.

 

Electrifying buses with batteries – provided they are powered with clean electricity – would make a great difference. The most widely-used form of public transport in the EU, buses account for a little over half of all public transport journeys and 8% of all passenger land-based transport according to the European Automobile Manufacturers Association.

 

The emergence of battery-powered electric buses, or e-buses, is a relatively recent development, but with it an outlook comes into focus which paints a bright picture of how public transportation of tomorrow is likely to look.

 

Electric buses from Lion Electric. Reducing pollution and emissions around children using school buses is an obvious benefit and something adding weight to arguments in favor of the switch to electric. Image via Lion Electric.

 

Towards market dominance

Optimism for e-buses becoming a major branch of public transport is reflected in the number of mainstream bus manufacturers which have adopted the technology, including Scania, BYD, Solaris, Irizar Group, Volvo, Mercedes, and VDL Bus & Coach.

 

By the end of 2018, these and other manufacturers had supported deployment of some 460,000 e-buses around the world (BloombergNEF).

 

It’s progress, especially considering the number grew by over 100,000 from end of 2017. And the impact of this according to a BloombergNEF report, is that by the end of 2019 some 270,000 daily barrels of diesel demand will have been displaced by e-buses.

 

Nevertheless, it’s clear that regions are embracing this new technology at varying speeds. China alone, for instance, operates some 421,000 of those e-buses, while the U.S. and Europe both operate fleets numbering only into the low hundreds.

 

A fleet of thirty e-Buses arrive in Finland in August 2019.

 

While widescale adoption of e-buses outside of China is evidently in its earliest of days, encouraging trends are emerging.

 

In Western Europe and Poland, e-bus registrations increased by 48% between 2017 and 2018, and through 2018, 5% (562) of all city buses registered were electric (CME Solutions).

 

In August of this year alone, Europe saw several highlights: Finnish HSL transport group took delivery of a fleet of 30 e-buses; in Warsaw, Poland, transport company MZA ordered 130 e-buses. In Gothenberg, Sweden, municipal transport company Vasttrafik ordered 220 e-Buses from Volvo.

 

Looking forward, BloombergNEF’s Electric Vehicle Outlook 2019 reports e-buses are to occupy a remarkable 81% of annual municipal bus sales by 2040. Interestingly, that’s a share higher than the equivalent number for passenger vehicles, which BloombergNEF put at 57%.

 

 

Increasing competitiveness of vehicles

Key to the adoption of e-buses is that these vehicles are increasingly compelling alternates to conventional buses. Gains in this sense include e-buses being simultaneously more technically capable and therefore a valid alternate in a practical sense, as well as more financially viable to operate.

 

Earlier this year, Chinese manufacturer BYD – which has delivered over 50,000 e-buses and electric coaches – launched the world’s longest fully electric bus. At 27m long, the K12A can carry 250 people up to a maximum speed of 70 km/h and on a single charge can travel close to 300 km, which BYD suggest is around an average day’s operations.

 

A reminder of the benefits of this kind of technology, BYD have stated that a single K12A e-bus saves the equivalent of 80 tons of CO2 emissions per year and 360,000 liters of fuel throughout its lifecycle.

 

Alongside contributing to cleaner, quieter streets, e-buses in many places are enabling reduced costs of operation due the lower cost per kilometer for running on electricity compared to diesel fuel.

 

Because of this, while battery costs can mean that e-buses carry a higher upfront cost compared to conventional combustion engine buses at the present time, ultimately these costs can be recovered through lifetime savings.

 

BYD’s K12A e-bus. Image via BYD.

 

Charging an urban revolution

As the principal determining factor for performance, battery technology has a great role to play in success of electric passenger vehicles and e-buses alike. On this front, improved battery performance and reduced costs can be counted on to continue to both extend the driving range of e-buses and reduce upfront costs.

 

Successful deployment of e-buses, however, relies on more than the vehicles themselves. Lack of charging infrastructure and power constraints in the power grid can limit the practical workings and overall success of e-buses. Going forward, both these aspects of charging need to be considered by various stakeholders, not least municipal actors, automobile manufacturers, and electricity network operators.

 

Currently, we see several approaches to charging being explored, with two main charging strategies being overnight charging (typically utilizing charging stations at depots) and charging through the day (opportunity charging). Both strategies can be used with the three leading hardware options of plug-in, pantograph, and induction. Each have their merits, and it remains to be seen if the industry might converge on just one, or if multiple solutions will continue to be utilized.

 

As for handling the new loads on electricity grids resulting from charging fleets of e-buses (and EVs for that matter), solutions include smart traffic planning to enable frequent charging and energy storage systems to enable peak shaving of the power demands.

 

Flexible and modular infrastructure in Mannheim, Germany, for e-bus charging via plug-in cable, pantograph and charging rail from Daimler. Image via Daimler AG.

 

With some 745,500 buses in circulation on European roads today, and less than 10% of the fleet typically renewed each year as buses reach the end of their 8 to 10 year lifecycle, it will be some time before all buses are emission-free (ACEA).

 

Still, the change coming in even the next few years with e-buses will be noticeable, even if it’s silent.

 

What’s more, the speed of transition might yet be quickened as governments adopt stronger targets to accelerate clean public transportation.

 

Take the Netherlands for example. One of the most aggressive markets for electrification in Europe, the nation has mandated that 100% of new public transport buses by 2025 must be zero emissions, and that the entire fleet must be emission free by 2030.

A revolution at sea – the challenges and opportunities of electrifying maritime industries

The shift to electric transportation is quickly characterized by the on-going success of electric vehicles, which in many ways are symbols of the transition to a cleaner, decarbonized future. But transportation by land, is just one part of the transport triad of land, air and sea – all of which must, ultimately, be decarbonized.

 

The electrification of maritime and air sectors is presently many years behind the electric vehicle (EV) transition. In large part this is because aircraft and ships are simply much larger systems, requiring far greater amounts of energy and power than automobiles, trucks or buses.

 

The situation presents challenges to electrification of these sectors by today’s technology. While vehicles can be ably powered by Li-ion batteries at competitive costs, the same is not true for most commercial aircraft or ships. Still, there are signs of progress, many of which are found in taking a closer look at the maritime industry.

 

The need for change

The decarbonization of shipping sector is urgently needed. Albeit supporting some 90% of global trade, according to the International Energy Agency (IEA) shipping accounts for around 2% of global carbon dioxide emissions; an amount greater than international aviation.

 

The IEA note: “Even with all policy measures currently in place and proposed, CO2 emissions from international shipping are projected to be 50% higher in 2040 than they were in 2008.”

 

The environmental cost of shipping is not only of concern for its greenhouse gas emissions; nitrogen oxide and sulphur dioxide emissions are of particular concern. A report published in Nature in 2018 featured calculation that 200 of the world’s largest ships produce as much sulphur as all the cars in the world combined.

 

The cause for these emissions is the bunker fuel powering combustion engines of ships. It’s one of the dirtiest heavy oils available, and two billion barrels of the fuel was used by the shipping industry through 2018 alone.

 

Unfortunately, converting much of world’s maritime fleet – especially larger container ships and cruise ships – away from dependence on heavy fuels to clean energy power systems is no simple matter. The sheer power and energy requirements of larger vessels are orders of magnitude greater than heavy trucks, let alone passenger vehicles, and certainly today’s batteries aren’t a viable option.

 

Change is on the horizon though, including introduction of regulations at both the international and national levels to promote maritime decarbonization.

 

 

Landmark legislation emerged in 2018 from the International Maritime organization (IMO) – the United Nations regulatory agency for the maritime industry – with a strategy that includes a target to reduce international shipping carbon emissions by at least 50% compared with 2008 levels by 2050.

 

More encouragingly yet, actions surrounding reducing emissions and clean power solutions for maritime sector are emerging.

 

Several maritime actors have begun exploring solutions to reduce emissions by way of options that include using cleaner fuels, adjusting operational parameters such as speed, installing engine exhaust scrubbers and switching to liquid natural gas. This is something, but likely not enough.

 

Scientists and industry analysts fear that these are short-term solutions which, while costing an enormous amount, will do relatively little to reduce emissions to the extents required.

 

The argument goes that shipping companies should instead focus time and investment in going fully green.

 

Attempts have been made on this front and momentum is gaining. One example is a ship owned by Hangzhou Modern Ship Design & Research Co. With a payload capacity of 2,200 tons and a 2,400 kWh lithium-ion battery system, it claimed the title of world’s first electric cargo ship.

 

Though the ship hints at the opportunities of electrifying shipping, it also highlights a challenge: on a single charge (requiring two hours), the ship can travel just 80 km – a distance that’s but a fraction of the thousands of kilometers container ships typically travel (for reference, New York to Rotterdam is over 6,000 km by sea).

 

These challenges, concerning battery power and capacity, however, should be seen as subject to innovation. And to be sure, there is a good deal of activity pushing for progress. Just this week in Japan, a newly announced joint company named e5 Lab presented itself with ambitions to develop clean electric maritime transport solutions.

 

The e5 Lab partners, including Asahi Tanker and Mitsubishi Corporation, stated its objective to “build the world’s first zero-emission tanker” by mid 2021. The tanker, pictured below, would be a battery-powered coastal vessel to operate in Tokyo Bay.

 

 

Meanwhile, in Norway, YARA and technology company KONGSBERG announced a partnership to build the world’s first autonomous, electric container vessel. Replacing 40,000 truck journeys a year, the ship is slated to be delivered in 2020.

 

Widespread deployment of battery-powered shipping may be some years away yet and certainly much is required in terms of battery performance to deliver on this for the world’s larger, heavier classes of container vessels and cruise liners. This being the case, there’s another maritime sector that is ripe for batteries, and the shift has already commenced.

 

The emergence of electric ferries

The electrification of ferries – ships designed for transport of passengers and vehicles – is an altogether different proposition than electrifying heavy ships.

 

Ferries are much smaller than container ships or cruise liners, travel relatively short distances, and operate along regular routes and schedules – all characteristics which leave ferries highly amenable to emission-free electric powertrains. The shift would radically improve the environmental footprint of the sector, and enable other benefits including quieter, safer vessels, lower operating costs and reduced need for maintenance.

 

One place where the transition is well underway is Norway.

 

According to a report from Siemens and environmental campaign group Bellona, 7 out of 10 Norwegian ferries would benefit from electrification of some kind. More specifically, of some 180 ferries in Norway, 84 operate with crossing times of less than 35 minutes and at least 20 trips per day – an operating profile that is considered profitable with battery operated ferries.

 

A reflection of the nation’s early embrace of electrification, Norway is home to the world’s first fully electric ferry – Ampere.

 

Put into service in May 2015 by Norled, the 80m-long Ampere runs 34 daily departures of its 5.7 km crossing and has a capacity of up to 120 cars and 360 passengers.

 

Ampere is powered by a 1,000 kWh Li-ion battery system from Corvus and Siemens, which can recharge during the 10-minute loading and unloading time of each trip from charging stations located at ports. Supporting Ampere’s operations, 260 kWh stationary battery systems have been deployed at either side of the crossing to supply power to the vessel while it recharges, as well as compensate for the load incurred through charging to avoid grid issues.

 

Because the region’s electricity is supplied entirely by hydropower, Ampere runs on fossil-free energy at costs 60% lower than with regular diesel. In comparison, a conventional ferry on the same route is estimated to consume some 1 million liters of diesel and emit 2,680 tons of CO2 and 37 tons of nitrogen oxides each year.

 

“This we believe is the beginning of the story where the green shift will give a renaissance for the Norwegian maritime sector. If the industry uses this technological advantage and the showcase right, we believe that this can help Norwegian shipyards succeed in the transition after the oil age,” state Ampere’s operators, Norled.

 

Other indications of the move towards electrification of ferries exist in Norway besides Ampere.

 

Rolls-Royce announced in August 2018, for instance, that it would be offering SAVe Energy – a scalable Li-ion battery system for ships. Three ship owning companies, Norled, Color Line, and the Norwegian Coastal Administration Shipping Company, have been partners in the development of the solution which is to be delivered from Rolls-Royce Power Electric in Bergen.

 

It’s all part of a trend that’s in part motivated by the Norwegian state pushing forward policy to crack down on maritime emissions, including taking action to halt emissions from cruise ships and ferries in Norway’s UNESCO World Heritage fjords – making them zero emission zones by 2026.

 

Clearly Norway is laying the groundwork here, providing compelling demonstrations of what can be accomplished with today’s technology and a progressive agenda for the future. But electrification of ferries across Europe as a whole is also not without a bright outlook, with emerging policy and deployment of technology by private industry.

 

And while the shift to battery powered electric vehicles continues at pace, its consequences in terms of advancing Li-ion battery technology and reducing costs can be counted on to deliver benefits which will push the electrification of ferries and other maritime sectors further still.

Securing a robust European ecosystem for Li-ion battery recycling

With the advent of electric transportation, we are rapidly moving towards a future dependent on Li-ion batteries. A responsible and modern approach to this industrial revolution must involve establishing a sustainable model for Li-ion battery manufacturing. However, that approach cannot end with manufacturing. Instead, it must extend to incorporate battery recycling as a fundamental aspect of a sustainable electric vehicle (EV) industry.

 

Batteries are, after all, systems which simultaneously require considerable amounts of energy to produce and valuable natural resources – points which underscore the importance of adopting an environmentally sound approach to their manufacture and end-of-life handling.

 

Northvolt is pioneering a green battery – a concept that begins with a blueprint for sustainable Li-ion battery manufacture, but extends into a fully built-out, robust ecosystem for recovery and recycling of batteries.

 

Use of the term ‘ecosystem’ is appropriate because of the complex, multi-layered nature that this new industry will assume.

 

There is, for instance, the requirement for interaction and collaboration between varied actors including consumers, automobile industries and battery manufacturers. There are a variety of technologies involved as well – several of which remain under development. Equally, recycling activities will have to be coordinated across widely distributed geographic regions, over timespans involving many years given the anticipated lifespans of batteries.

 

Of course there are already solutions available to support the recycling of Li-ion batteries. And despite misconception surrounding the issue, most Li-ion batteries used today are indeed recovered and recycled. Some 97,000 tonnes of Li-ion batteries were recycled last year alone – mostly in China and South Korea.

 

While this is encouraging, it does not mean that Europe is sufficiently prepared for handling recycling of Li-ion batteries through the forthcoming decades. The emergence of huge volumes of Li-ion batteries onto global markets to power EVs changes the dynamics of battery recycling substantially.

 

Bloomberg New Energy Finance’s Electric Vehicle Outlook 2019 suggests that by 2040, 57% of all passenger vehicle sales, and over 30% of the global passenger vehicle fleet, will be electric. Aside from a sheer increase in recycling capacity which will be required, new challenges stem from the introduction of novel EV battery systems which are quite different in form and chemistry compared to those batteries found in portables.

 

Today, the vast majority of recycled batteries come from portable electronics which are recycled as electronic waste from consumer goods including used laptops and mobile phones. Accessing the batteries within these products is relatively straight-forward from a recycling perspective and their recovery from consumers benefits from existing national-level electronic waste disposal schemes.

 

The situation is quite different with EV battery packs, which are much larger, more complex in design and build, and feature Li-ion cells based around new chemistries. Moreover, Europe simply has not yet implemented comprehensive recovery schemes of the type which will facilitate effective European recycling.

 

So what consequences do these new dynamics carry for recycling?

 

To begin with, we need to establish smart, efficient and safe ways to recover batteries once they reach the end of their life. EV owners cannot simply remove their battery pack and place it into an electronic waste collection point in their local community. The issue of recovery likely requires digital tools to identify and locate batteries when they reach end-of-life, as well as practical solutions for collection and storage of batteries prior to recycling, and finally transport to recycling stations.

 

Once battery packs are recovered, we need technologies to support early steps of recycling which involve discharging batteries and stripping packs down to cell level – something involving removal of external housing which encases the cells. Awareness of these kinds of challenges is important and means we can already begin to think about recyclability of battery packs as we design them.

 

As for the cells themselves, while current recycling technologies do exist – featuring effective hydrometallurgical treatments – these must be refined to ensure that they are optimized for recovery of materials found in modern EV battery cell chemistries, in particular those elements found in so-called active material of cells, including cobalt, nickel, and manganese.

 

 

Considered with this perspective there are clear logistical challenges to recycling of Li-ion batteries in the future. That industry should aim for this whole ecosystem to run efficiently, with the lowest environmental footprint possible, and that there are European regulations governing the transport of Li-ion batteries adds further complexity to the matter.

 

While technology has a large role to play, so does national and international policy. A recent European Commission evaluation of the European Battery Directive, which was established in 2006 as EU legislation to govern the batteries as waste, acknowledges that regulations must be refined to catch up and prepare for the future that is rapidly approaching, stating: “While key circular economy goals are reflected in the directive, such as addressing the supply of materials and recycling, there is still significant untapped potential.”

 

Ultimately, legislation can facilitate recovery, transport and recycling of batteries within Europe, or hinder it.

 

That recycling to recover materials directly supports sustainable practices of battery manufacturers, and that there already exist legal responsibilities of battery manufacturers with respect to duty of care over end-of-life batteries, it is clear that recycling and manufacturing go hand-in-hand.

 

It is encouraging to note therefore that accelerating European recycling capacity is emphasized by the European Battery Alliance (EBA) – an initiative to which Northvolt belongs, established by the European Commission to advance a “comprehensive set of concrete measures to develop an innovative, sustainable and competitive battery ecosystem in Europe.”

 

In relation to recycling, the EBA’s measures highlight the importance of “access [to] secondary raw materials by recycling in a circular economy of batteries.”

 

Top-down support for establishing recycling of Li-ion batteries of this sort will prove vital to the endeavor ahead – just as supportive policy for deployment of renewable energy is proving today. At the same time, however, there is a role to be played by many other stakeholders, private industry actors of energy and automobile sectors and battery manufacturers such as Northvolt.

 

 

Northvolt’s advance of a green battery is tightly tied to developing solutions in response to all of the challenges of recycling. Recycling capacity will yield recovery of materials which will be fed back into the Northvolt’s cell manufacturing loop or otherwise be directed towards other industrial needs. Success will mean a reduced environmental footprint for the EV revolution, a new vibrant industry for Europe and ensure that the pitfalls of the past, where resources have been taken for granted, are avoided.

 

It’s an exciting future. One which can only be secured through a blend of technologies, fresh-thinking and collaboration across industries and effective legislation.

Meet Jasmin Noori, Business Development Manager – Grid

Meet Jasmin Noori. Industrial engineer of KTH Royal Institute of Technology in Sweden and today one of Northvolt’s talented business development managers working on grid energy storage solutions.

 

Northvolt is in the business of developing cutting-edge battery solutions for new and emerging markets and has focused on building up a strong business development team to map out the markets into which Northvolt will play.

 

Batteries can serve countless applications, but Northvolt has designated four areas as markets for Li-ion battery solutions: automotive, industrial, grid and portable.

 

For Jasmin, it is the development of Northvolt’s business offerings for grid markets that occupies her time at Northvolt’s office in Stockholm.

 

“Working on building energy storage solutions for electricity grids basically means working at the very front of modern energy systems,” Jasmin explains.

 

“All over the world we’re seeing this huge shift in the way that energy is produced and consumed thanks to renewable energy systems like solar PV and wind power. And it has come to be acknowledged that a fundamental part of that transition relies on energy storage, and that’s where batteries come into play.”

 

“As electricity consumption is increasing, batteries can help to stabilize electricity grids and reduce peak loads. So for me working on grid storage is an incredibly exciting job – it’s great to be a part of something that is making such a positive difference to our world.”

 

Finding Northvolt

Enrolled in industrial engineering at KTH in 2006, Jasmin was recognizing the emergence and importance of global efforts to decarbonize energy systems and opted to specialize in energy systems.

 

“I had just watched Al Gore’s An Inconvenient Truth and was about to choose my technical specialization during my first year at KTH. It was clear to me that transforming global energy systems would become one of the biggest challenges that society would face in my lifetime, and probably for the century.”

 

“From an engineering perspective, it’s a puzzle to solve and that’s a lot of fun. But of course, there is also the real world, and solutions have to be competitive and viable in a business sense – that adds to the challenge.”

 

During her studies Jasmin took on an exchange program, spending one year in Italy studying finance and marketing. The experience meant expanding her perspective, not to mention the chance to pick up on some Italian. “Northvolt actually has some collaboration with Italian power providers, so I’ve been tempted to try out my Italian again, but I must admin that generally I keep to English!”

 

Following her studies Jasmin completed a traineeship at ABB.

 

Recalling the experience, she says: “We had a rotation program with assignments in different departments and I had the opportunity to explore many different areas at ABB; ones that required developing both technical and commercial skills. I really liked the mix of both commercial and technical aspects and wanted to continue working with technical sales.”

 

After the traineeship Jasmin worked as an Area Sales Manager, responsible for sales of high-voltage products to south east Asia and travelled frequently to the region before eventually moving to China for a year with the company.

 

It was during that year, on a visit home to Sweden, that Jasmin came into contact with a new start-up.

 

“I couldn’t shake off the idea of working in clean-tech and, maybe, at Northvolt. I began following Northvolt’s news and reading about its plans, which to me seemed incredibly interesting. I saw the potential of batteries to support energy grids and their position within power solutions, but I also saw the significance of Northvolt’s aim to develop a blueprint for sustainable battery production.”

 

It wasn’t long before Jasmin submitted an application to Northvolt, and in January 2019 arrived at Northvolt for orientation.

 

Never an ordinary day

In some sense, the role of battery energy storage for the grid is straight-forward. Renewable energy generation is intermittent – a fact that limits how we can make use of electricity generated from renewables. However, storing generated electricity in batteries brings flexibility in terms of how and when that energy can be used.

 

Of course, the reality of Jasmin and her team’s work is more complex.

 

As Jasmin says: “We need battery solutions built for specific use cases and environments. This means we need to first identify where those use cases are, and then what the precise requirements are.”

 

Expanding on the work of her team, Jasmin describes working in two ways to accomplish their goal.

 

“On the one hand we are identifying grid solutions ourselves and building our own products for markets we see as evolving. For example, we saw a need to replace diesel generators and therefore developed Voltpack. This a clear example of seeing trends in the market and then developing or adapting a product accordingly.”

 

“Of course, we want to be smart in how systems are built,” says Jasmin, highlighting the example of the significance of system modularity.

 

“Designing battery systems in a modular manner brings a lot of benefits. Basically it means we can work with batteries as building blocks which can be linked up to supply energy at varying scales, all based around the same technology. It’s a strategy that reduces costs by facilitating manufacturing, process automation and so on.”

 

For more insight on development of Northvolt’s portfolio of battery solutions, see ‘A Portfolio of Green Battery Solutions‘.

 

“But at the same time, we’re dealing a lot with customers who are coming to Northvolt for solutions that enable them to increase use of clean energy today.”

 

“The energy market has for a long period of time been rather conservative, but is now opening up, and many companies are seeing in Northvolt the opportunity to develop particularly battery solutions built for their unique requirements.”

 

Jasmin explains that this dynamic and highly engaged relationship with customers is an aspect to work at Northvolt she especially enjoys, saying: “We’ve really embraced the idea of responding to customer needs and collaborating to develop our products. This means that products we deliver are more refined and fit-for-purpose. You really feel engaged and a part of this move to a cleaner future, built around new technology.”

 

“The approach extends beyond physical systems to developing digital solutions too,” says Jasmin. “Northvolt is developing battery systems at varying scales, but we’re also very much engaged with the opportunities of digital technologies. Actually, these tools are key to optimizing systems and ensuring we get the most out of battery assets – a point that motivated Northvolt’s work on Connected Batteries.”

“As part of my routine work, apart from meeting customers, I also work closely with Northvolt’s Battery Systems department for delivery of projects. This means working with our project managers, electrical, thermal and mechanical engineers – people actually designing and building solutions Northvolt requires for its customers, according to needs that our team work to identity.”

 

Reflecting over her first seven months at Northvolt, Jasmin notes that there has been a big change in work. “As we’ve gone along, we have moved the focus from securing customer contracts to now delivering on some of the more mature projects. The pace here is really special, and it’s exciting to see what can be done when you get a good team together.”

 

Still, the journey is just beginning for Northvolt. Just as energy industries are coming to understand the role for battery storage, Northvolt, Jasmin and her team, have an exciting path ahead to develop and deliver solutions.

 

“While the benefit of battery storage is becoming clearer,” says Jasmin, “and it certainly helps that we have more and more compelling examples out there now, there is still a need to push to ensure that companies both understand the need for a shift away from fossil-based energy production and the advantages that batteries bring.”

 

Jasmin concludes: “It has been a fun and inspiring journey so far and it’s great being surrounded with talented and devoted people. The opportunities are definitely out there, and our Business Development team is strong and well-positioned to capture them.”

A portfolio of green battery solutions

One technology, endless applications

 

Across global industries and society are hints of a dramatic shift in the way that we generate and consume energy.

 

Fossil fuel-based energy systems are destined for obsolescence. Electrification is set to transform our world away from pollution and the environmental burden of carbon fuels. Sustainability is increasingly a fundamental of annual corporate policies.

 

The future is brighter for these shifts. But with the emergence of clean renewable energy has arrived a need to innovate new solutions for electricity storage and use.

 

“Just like the internet transformed how we work, socialize and interact, moving beyond the internal combustion engine (ICE) to a world of electric sustainable power generation and consumption is a profound change for citizens and companies alike,” says Northvolt’s Chief Business Development Officer, Martin Anderlind.

 

“But old habits die slowly. Despite global warming and its threat to mankind, the only way to consistently and quickly make people change habits is offering a better alternative at a lower cost. Sustainable wind and solar energy and electric cars are doing just that. Today, the only missing piece of the puzzle is a cheap and efficient way to store and retrieve this energy.”

 

“This is where batteries come in, and with the enormous amounts needed for these two huge industries alone, as volumes go up, costs will go down and all other use-cases will – like ships at high tide – be carried along as well.”

 

For this, we need to think differently. To assure success, application of cutting-edge cell design and battery systems development must be met with a responsiveness to both industrial customers’ needs and the priorities that define our age.

 

“Energy systems aren’t transformed very often,” says Martin. “And with most of this massive transformation ahead of us, we need to think about not only how we can get from here to there in the fastest and cheapest way, but also how to do it in a smart, efficient, sustainable and socially ethical way.”

 

Northvolt arrived onto the industrial scene with all this in mind, and a fresh business model for battery manufacturing and commitment to sustainability.

 

Key to that model was adoption of a dual role as both cell manufacturer and battery systems developer. With this comes a unique position to leverage control over the complete development process of battery products.

 

Working in this way has led to an initial product portfolio from Northvolt – a selection of lithium-ion battery systems built to capitalize on the strengths of the technology tuned to customers’ unique needs.

 

“Twenty years from now we will look back and wonder why it didn’t happen much sooner.”

 

Battery buildings blocks

The landscape of products powered by batteries is vast and diverse, reaching far beyond electric vehicles – a situation prompting Northvolt to developing two kinds of battery solutions: standardized and custom.

 

Based on either cylindric or prismatic cells, Northvolt’s standardized battery products are built to varying scales as solutions that like building blocks can be assembled and integrated into third-party products or simply stand-alone as plug-and-play solutions.

 

Custom battery products, on the other hand, are built by Northvolt to specification of third-parties for integration into their own applications, such as construction equipment, ships and trains. Here too, customers will have the option to choose between cylindrical or prismatic cell formats as the most fundamental building blocks.

From cars to trucks to trains and tools

Supplying the European automobile industry with high-performance, green batteries has been a key motivator for Northvolt since its earliest days.

 

Asked what it is that’s going to make a real difference here, Martin, says: “Electrification of the auto industry really comes down to battery cell chemistry.”

 

“It is the heart of the electric vehicle in the same way as the combustion engine has defined vehicles for the past hundred years. Given the importance of cells, we are working closely with partners in the industry to tailor battery cells to suit exactly the kind of vehicle and customer experience desired.”

 

“This means optimizing solutions for specific vehicles, applications or market segments. For instance, heavy trucks or commercial vehicles may prioritize power or cycle life‚ whereas a regular passenger vehicle may value cost per kWh or fast charging .”

 

“To achieve this we invite our customers early and deeply into the design process. Doing this enables us to truly understand different market segment needs and provide optimized solutions,” says Martin, highlighting Northvolt’s partnership with Scania.

 

 

Battery cell development for the automotive industry will be undertaken at Northvolt Labs in Västerås, which serves as a platform for product research and industrialization of the custom cells Northvolt has already contracted to supply.

 

With its 350 MWh/year manufacturing line, Northvolt Labs will be capable of mimicking the full-scale manufacturing processes (albeit with less automation) planned for the Northvolt Ett gigafactory in Skellefteå.

 

A close bond between Northvolt and the vehicle industry is clear in the on-going work with world-leading mining giant, Epiroc, where we are delivering heavy-duty battery systems to power a pioneering fleet of underground mining vehicles. Reflecting versatility of these battery packs, the same systems used here (Badass Voltpacks) are slated to go into the world’s largest battery-powered vehicle on rails – a train being develop by Railcare.

 

Li-ion batteries will transform other sectors too.

 

“Power tools, home appliances, gardening equipment – shifting most of these over to batteries, going cordless, leads to great improvements and flexibility in many more areas than today.”

 

“Work will be safer – people and machinery can get entangled in cords and can injure themselves and others. More flexible and productive – freeing ourselves from a dependence on outlets nearby means that we can also look forward to increased flexibility, productivity and in many places lower cost. As long as you’re charged, you can work almost anywhere.”

 

“Today we generally accept that gas-powered machines are noisy and polluting. This has a big impact as this work can’t be performed in populated areas in early mornings or late evenings, or without great disturbance and associated health risks. But this changes with batteries. With silent, battery-driven machines, operators can increase uptime and flexibility and our streets will become quieter, cleaner, safer and much more pleasant.”

 

 

Supporting renewable energy

Considering the massive accumulated volume of cells required by all these different markets, there is every reason to embrace standardized products where it makes sense. Standardized products, while not suited to all circumstances, are perfectly fit for many.

 

Standardization means more common components. And more common manufacturing processes. Altogether, it means more efficient production and lowered costs of energy storage.

 

One market sector where Northvolt will be delivering standardized battery solutions is the electricity grid, where they will be used to support renewable energy generation and use.

 

“Grid energy storage perform a number of different services, in order to keep our grids operating and in balance,” explains Martin.

 

“To accommodate this, Northvolt offers a family of grid products that can serve multiple services and revenues streams, while supporting the ongoing transition more renewable solar and wind energy generation, handling increased power peaks or simply back-up crucial industrial loads.”

 

Just as different vehicles carry different requirements, so do stationary energy storage systems.

 

“Our lineup of standard products range from modular building blocks such as the High Voltblock to packs, racks and complete solutions such as the Life Voltrack – built to fit specific grid requirements and which can be scaled to meet various project needs.”

 

Smart, collaborative design

Across these sectors, Northvolt’s control of each step of the manufacturing process of battery cells and products means expert teams working in-house on everything from initial concept and design, through prototyping, validation, certification and into serial production.

 

As Martin says: “With deep vertical integration from raw material preparation and active material, to cell development and system design, Northvolt has unique competences and advantage in designing, developing and manufacturing solutions to fit specific application needs. That we are also working in close collaboration with customers to design and refine products for their different and unique end-uses simply adds further depth to an already holistic strategy.”

 

Introducing Voltrack: modular stationary energy storage from Northvolt

Development of Northvolt’s stationary energy storage system, Voltrack Generation 1, enters a new phase as the first unit is shipped from its manufacturing facility.

The event represents a milestone for Northvolt and comes as the energy industry becomes increasingly aware of the transformative potential that stationary storage will have for global energy markets in enabling the time-shifting of renewable power from point of generation to point of use.

 

Leveraging Northvolt’s experience of developing battery modules for industrial vehicle applications and assembled at Northvolt Battery Systems in Gdansk, Poland, Voltrack is a liquid-cooled Li-ion battery system built for demanding industrial energy storage applications.

 

Voltrack contains sixteen battery modules together delivering a peak power output up to 170 kW, continuous power output up to 140 kW and a usable energy capacity of 175 kWh. A standalone solution, Voltrack features self-contained cooling and energy management systems. However, multiple Voltrack systems may be linked to meet the energy storage needs of customers operating at utility, commercial or industrial scales.

 

As validation continues, Northvolt is also working towards the development of several other Voltrack variants, including ones featuring alternate cooling systems.

 

 

Amidst the landscape of new energy there exists a wide range of settings within which Voltrack will be ideally suited to deliver the benefits of energy storage.

 

The electricity grid itself is the prime example. Here, utility-scale battery storage is already proving itself the ideal solution to serve multiple roles. Key use-cases include, short duration storage, energy time-shifting and peaking capacity, frequency regulation and many more ancillary functions which support grid stability and enable greater use of renewables.

 

In commercial and industrial settings, battery storage brings other benefits. For instance, allowing for control over when electricity is drawn from the grid, battery storage opens up a route to avoiding peak charges. Moreover, if coupled with solar PV systems, storage allows for greater use of self-generated electricity together with the means to more fully engage in new and emerging practices disrupting the conventional energy system, such as participation in emerging microgrid electricity markets. On-site battery storage also provides the assurance of reliable backup power.

 

Although deployment of stationary energy storage has been modest to date, industry forecasters are united in expectation of a dramatic uptake in energy storage from 2020 onwards.

 

A recent report from energy analysis firm, Wood Mackenzie Power and Renewables, provides perspective on this shifting landscape (Global Energy Storage Outlook 2019), noting that global energy storage deployments held compound annual growth rate of 74% between 2013-2018. Year-on-year growth from 2017 to 2018 was 140%, resulting in installed capacity reaching 6 GWh by the end of 2018.

 

The analysts forecast the global energy storage market growing to 158 GWh in 2024, with deployment on the grid (known as front-of-meter) to support electricity networks remaining the largest end-use.

 

The dominant force behind ESS deployment is undoubtedly fallings costs of batteries. According to Bloomberg New Energy Finance (BNEF), the levelized cost of electricity (LCOE) — a benchmark metric for the cost of a technology delivering electricity over its lifespan — for Li-ion battery storage has become increasingly competitive.

 

BNEF’s recent analysis of over 7,000 projects worldwide revealed that Li-ion battery LCOE has fallen 35% to $187 per MWh since the first half of 2018 (BNEF).

 

An implication of the trend is that Li-ion based energy storage, and the business cases it enables, is an increasingly viable commercial option compared with earlier years in which its deployment was constrained on economic grounds.

 

BNEF reports: “Batteries co-located with solar or wind projects are starting to compete, in many markets and without subsidy, with coal- and gas-fired generation for the provision of ‘dispatchable power’ that can be delivered whenever the grid needs it (as opposed to only when the wind is blowing, or the sun is shining).”

Meet Emma Nehrenheim, Chief Environmental Officer at Northvolt

Meet Emma Nehrenheim. Professor in Environmental Engineering of Mälardalen University, academic researcher, industry innovator, and now the person charged with delivering the world its greenest battery.

 

“I’m an idealist and an environmentalist,” says Emma. “The thing is that when you want to really accomplish something, and you’re in a small corner of the world, it’s hard to make an impact on the larger scale. So when a project like Northvolt comes along, one that’s really going to have a big difference, you jump at that.”

 

For Emma, that jump came April 2017. Working with ABB at the time, a Sunday morning phone call brought Emma into the office to meet with a new customer — an ambitious start-up that had recently emerged onto the Swedish industrial scene with big plans.

 

“From that first meeting, I knew I wanted to be involved with Northvolt. The importance of what Northvolt was planning was immediately clear to me.”

 

Though Emma’s background had little to do with batteries, it had everything to do with building solutions for a cleaner, more sustainable world.

 

Her expertise was centered around industrial waste and wastewater treatment, and projects Emma was involved with included developing solutions utilizing algae for treatment of nutrients in wastewater, the use of organic materials for handling pollutants and biogas production.

 

Of work as Product Line Manager in ABB Power Generation working with water treatment, Emma said: “It was work where there’s great opportunity for delivering critical services in a much more environmentally friendly way.”

 

Emma joined Northvolt in its earliest days as Chief Environmental Officer, motivated by the combination of challenge, opportunity and meaning.

 

“Everything should be electrified for the simple reason that the most sustainable way to transport energy is through the electricity grid. It depends on local conditions how you produce, wind or solar or biogas for instance, but distribution should be harmonized.”

 

“Electrification like this provides the quickest route to decarbonizing across multiple sectors of transport, heating, power and so on.”

 

In line with current mainstream thinking within the green energy industry, Emma recognized that batteries play a pivotal role in this future but extended this with consideration for the environmental aspect of batteries.

 

“It’s clear to me that batteries are the enabler to so much of that vision for electrification, but there are better and worse ways to build a battery from an environmental perspective. At its heart, Northvolt is about developing the very best possible way to build a battery – a way that does not compromise with other sustainability aspects. That’s what my team and I are working towards.”

 

October 2, 2015, His Majesty King Carl XVI Gustaf of Sweden visits MDH and the lab of Emma Nehrenheim. Photo reprinted with permission from photographer, Jonas Bilberg, and MDH.

 

Joining Northvolt

At its core, Emma’s role carries responsibility for Northvolt’s environmental and sustainability agenda – it’s no small duty.

 

“What we’re doing with building a green battery has simply never been done before,” she remarks. “That’s challenging of course, but it’s also incredibly motivating. Because we’re working towards something entirely new, there’s scope for fresh solutions and approaches to be applied. Actually, it’s more than scope; I believe it’s a fundamental necessity that we build our away to a green battery.”

 

With the Northvolt mission to produce a template for how to establish a sustainable model for battery manufacturing, the work of Emma and her team necessarily extends well beyond environmental compliance.

 

“That’s something Peter Carlsson (Northvolt’s CEO) explained to me early on, that I was to take an engineering and technical perspective in this path. An early goal was to assemble a team of experts who could deliver what we required.”

 

The solutions

From the outset it was understood that the broad solution to reducing the environmental footprint of Northvolt batteries rested in vertical integration – that is, the incorporation of much of the battery manufacturing supply chain into the operations of Northvolt itself, rather than outsourcing processes to external suppliers.

 

“What we are trying to accomplish when it comes to a vertical integrated factory is to take everything that comes out of a machine and recirculate it. So that may be heat, which we can use to heat up another machine. If it’s water, let’s recycle it. If it’s a chemical, recycle it. In this way, with vertical integration we have control over the processes that contribute to the environmental footprint of our batteries.”

 

The idea is to build flows as small as possible, Emma explained, describing how early work involved analyzing every step of the manufacturing process on the hunt for every stream that could be optimized in this way.

 

“Nothing is too small to work with, and everything has value when it comes to ensuring the most efficient manufacturing footprint possible.”

 

The circular approach extends to the larger scale too. “The largest flow we’re working with is the battery itself. Here we’re developing a well-defined end-of-life strategy for batteries.”

 

Motivating all of this is hard truth: with the huge growth pitched for lithium-ion battery market (90% of which will go to electric vehicles by 2025), some 11 million tonnes of batteries will be discarded by 2030.

 

“Looking ahead to where we’re going, it’s clear that we have to establish a new standard not only for how we manufacture batteries, but how we recycle them too. Recycled lithium-ion batteries will be an agent of change in the energy world and a critical piece of the puzzle in our fulfilment of the global sustainable development ambitions.”

 

On collaboration

A vital aspect driving Northvolt’s approach to innovation, Emma explained, is to recognize the value of partnership: “Northvolt’s vision is incredibly ambitious, and it’s one that requires collaboration. We cannot know everything, but by drawing on the expertise of groups outside the company we can bring unique insights to the table.”

 

“The key is to set up the right partnerships with the right people, so that together we can work with the values we have in play. That’s really going to make a difference for us.”

 

“We’ve brought a lot of world-class people in-house, from around the planet, but even still, partners like ABB are key to our work.”

 

As it happens, Emma’s previous employer, ABB, remains in her world, but now as a key partner to Northvolt, involved with developing automation technologies that are critical to the Northvolt vision.

 

In Västerås, where Northvolt’s demonstration line and R&D facility, Northvolt Labs, is being established, ABB is building a strong automation cluster and embracing a highly collaborative approach to development.

 

Commenting on the partnership between the two companies, Emma says: “ABB is very ambitious in its own rights, and there is little doubt in my mind that they see the Northvolt venture as a challenge they were very excited to engage with. We’re in this together, and they represent a major asset to Northvolt.”

 

Collaboration extends further to include work with academic groups too. “We also look forward to discussing what we can do together in automation and robotics with academia, where MDH has cutting-edge expertise,” says Emma.

 

In another context, Northvolt has been working with the Industrial Materials Recycling group at Chalmers University of Technology to develop sustainable and industrialized technologies for large-scale batteries recycling processes.

 

Other partnerships geared towards developing next-generation recycling processes include ones with KTH Royal Institute of Technology in Stockholm and Aalto University in Finland. “We have to stay prepared in respect to optimizing processes and keeping up the momentum on our industrialization optimization.”

 

 

The bigger picture

For Emma, there is a certain context to the philosophy driving her. “What we’ve learnt from the history of environmental work in general is that usually we are hitting things far too late. We see the problem too late. So carbon footprint and climate change is important to us now, clearly, but we need to consider what will be critical in ten, twenty, thirty years. Here, I think water usage, pollution in terms of chemistry…these are some of things we need to take great care over today.”

 

“If we are to stay modern after production is up and running, we need to keep track of our compromises.”

 

Asked if she sees adoption of similar sustainable approaches in the battery manufacturing industry at large, Emma offers a definitive answer: “No I don’t see that at all. In fact, it is quite the other way around. We see plants being established, even here in Europe, where they will be leaching into the environment in a way that we would never do.”

 

It’s a worrying circumstance considering the number of battery factories under development. All the more reason, according to Emma, that Northvolt succeed. “If we can prove this model for manufacture is viable, there should be no question left for anyone taking decisions over how to deploy new manufacturing capacity.”

 

At this point in such a conversation, there is natural tendency to veer towards the financial implications of a sustainable solution. “I have two points I like to highlight on that matter,” says Emma.

 

“Firstly, what we have found is that with these kinds of investments, they create byproducts that have great value. So the down payment period is actually far shorter than you would think. It’s not bad economy at all, provided you find the right investments.”

 

“Second, sustainable assurances of the sort Northvolt will be providing, are almost certainly going to be a hygiene factor for car manufacturers and other OEMs. So there will be a premium and demand for this.”

 

Encouragingly, as Emma explained, recognition of these points is already apparent across the industry, and in customer segments. “Customers are already communicating this to us. And this has changed. If I go back two years, I have a feeling they were more interested in typical battery metrics; in function, safety, price and so on. Now I hear that if a battery provider is even roughly on par with cost and quality, but have a better sustainable footprint, they win every time.”

 

Further reading: Closing the loop: Recycling lithium-ion batteries on an industrial level, the final step towards sustainable electrification.

Setting a new standard in digitalization of battery assets

The digital frontier

All battery customers are rightfully concerned for loss in battery power and energy through life and usage. Performance degradation is inherently par for the course with batteries, but with new approaches on the horizon the status quo isn’t something we are bound to.

 

By leveraging tools that define the state of the art in modern industry, including machine learning and artificial intelligence (AI), a digital infrastructure can be established that enhances battery performance, curtails degradation and extends operational lifespans.

 

Considered in its fuller sense, this digital approach goes further still – setting manufacturers up to work in a wholly new landscape, with a data-driven foundation enabling the fine-tuning and tailoring of future products from cell chemistry to system design.

 

Oscar Fors, Northvolt President, Battery Systems comments: “Batteries are often thought of as passive systems – we plug them in, and they provide power. But we see batteries as a far more dynamic asset. If you can properly understand them and develop the right tools to work with all the insights on offer, we can tap into batteries in a way never seen before.”

 

“It is here where we see substantial opportunity for improving the operational performance and lifetimes of batteries, and it’s driving an approach we’re calling Connected Batteries.”

 

Bringing Industry 4.0 to batteries

With electrification of industries where batteries are a new asset in play, users are not necessarily familiar with intricacies of operating and managing batteries. Since poor battery management is a sure road to battery degradation, the issue represents a challenge which must be overcome if we’re to fully exploit all that battery technology has to offer.

 

Fortunately, the situation is one that may be improved upon through a combination of intelligent data analytics, enhanced traceability and automation. Carefully applied, these technologies may yield far better lifetime management of battery assets than otherwise possible.

 

As is characteristic of Industry 4.0, the key to securing this goal rests in harnessing data. To this end, Northvolt is building telemetry and data collection into every aspect of its business and products.

 

Landon Mossburg, Northvolt Chief Automation Officer, explains: “Recognizing the dynamic nature of batteries and that increasing number of data points leads to far better basis for management and performance.”

 

“We’re moving beyond simply collecting current and temperature measurements. We want to know everything we can about batteries, from design and manufacture right through to operations and the ambient environment during deployment.”

 

Data collection at Northvolt begins with manufacturing, where virtually every process will be tracked. Subsequent to this, battery materials and components will be tagged with metadata so that their origins can be traced with specificity.

 

Once batteries are deployed, core parameters over which Northvolt is gathering battery performance data include temperature, state of health (SOH), state of charge (SOC), cooling system performance, electrical measurements, and usage metrics. This data is also supplemented with contextual information on where the asset is situated and how it’s being used.

 

At Northvolt, battery telemetry will be streamed to a secure facility where data will be evaluated by self-learning algorithms and intelligent systems. Customers will own their battery data, but in sharing it with Northvolt, substantial untapped value will be unlocked for them.

 

These systems will analyze battery telemetry data alongside all other data, for instance environmental and contextual information, and use the results to inform a range of diagnostics and subsequent operations to ensure that batteries deployed around the world are being used, charged, and treated as well as possible.


On the customer end, operators will have access to a Northvolt-built API app providing immediate, real-time insights. Here, simply scanning a QR code with a smartphone will allow for components and whole battery systems to be quickly identified. The data provided through the app will facilitate O&M, asset management, logistics and much more.

 

“Knowledge on how asset use influences the long-term nature of a battery and battery cell consumption lifespan will open up significant new ways for customers to work much more cost-effectively with batteries,” says Landon.

 

Inner workings of Connected Batteries

A core aspect to the Connected Batteries solution is machine learning enabled pattern detection. Once patterns are identified as being causally related to some aspect of battery performance, they can be used to develop optimized solutions and reactive measures. These can be pushed out over the wire to batteries and implemented through software/firmware.

 

Solutions could be implemented on individual batteries which are flagged for action, or across a relevant segment of all globally deployed batteries.

 

“This is not simply about collecting data but taking a proactive approach to implementing new protocols that enhance battery performance,” says Oscar.

 

“You can consider it a rule-based system: ‘If A and B, then execute C’. For instance, once a pattern is learnt, its subsequent detection can trigger a particular protocol to engage. That protocol, executed through the battery management system (BMS), may be a particular cooling pattern, or other adjustment.”

 

With this digital ecosystem of connected batteries, there is an envelope of some 10-20% in typical lifetime battery degradation in power and energy which Northvolt seek to reduce.

 

Applications

There are numerous circumstances where digitalization of batteries in ways outlined above will yield considerable advantages. At Northvolt, applications are considered across three timescales: immediate/operational, tactical and long-term strategic.

 

In the immediate context, systems will identify significant, potentially problematic, deviations from the norm or ideal envelop within which batteries should be operated. Alerting technicians to this, remedial action may be taken in real-time, beginning with contacting the battery owner/operator. The beauty of this is that diagnosis (and solutions) can be prepared in advance of dispatched technicians reaching the battery in question, thereby reducing asset downtime.

 

In the tactical timescale, Northvolt will evaluate patterns that will enable it to determine new, refined practices to optimize battery performance, for example adjusting BMS parameters in response to use profiles.

 

A short, simplified use-case illuminates how the system will function:

 

Imagine a mining vehicle, operating a hot-swap battery protocol (where a depleted battery is exchanged for a fresh, fully-charged one). Northvolt detects a pattern of repeated overcharging events and flags the battery. Subsequent analysis reveals the problem: the exchange of batteries is taking place at the top of the mine and precedes the vehicle’s descent down into the mine during which regenerative breaking is leading to over-charge of battery. The solution is a simple one: hot-swap at the bottom of mine, avoid over-charge and prolong the life of the battery.

 

Many more scenarios can be imagined too. For instance, ones relating to seasonal or weather-dependent charging considerations and the delivery of solutions involving compensating across appropriate parameters. Or solutions building off the idea that although optimal charge may typically be between 10-90%, situation-specific circumstances may prompt that being adjusted to 20-80%.

 

Across the long-term strategic scale, new insights on performance coupled with traceability (bringing fresh perspective on otherwise unknown manufacturing process variables) is envisioned to empower Northvolt with perspective to work at a whole new level of battery cell and system development and manufacture. (A topic dealt with in part 2.)

 

“This is a truly new area for battery R&D,” said Oscar. “With this kind of intelligence, we can tune operating parameters, adjust firmware, design cooling solutions customized to certain circumstances or better charging management software in response to particular charge profiles…the options are endless.”

 

Predictive maintenance & novel business models

Beyond improving battery performance, novel business cases and beneficial commercial practices emerge with the digitalization of batteries.

 

For instance, digital architecture for battery systems will enable Northvolt to predict with pinpoint accuracy when assets need to be serviced or replaced. There is every reason to expect that so-called predictive maintenance of this sort will be met with the same kinds of success as can be seen within other industries that have adopted the Industry 4.0 approach.

 

In turn, a consequence of these solutions taken together is new flexibility in how battery products are purchased. The doors open on the introduction of usage-based dynamic warranties which work in the favor of battery owners, and purchase agreements which recognize that customers will be operating within the best possible bounds of battery usage and care.

 

As Oscar says: “By providing owners with the tools to get the most from batteries we can substantially improve the value proposition of every business case – that’s good for us as a manufacturer concerned with encouraging battery-based electrification, and for our customers.”

 

These advantages exist irrespective of the use-case for battery systems, and most certainly extend to stationary battery storage system performance. With these systems, understanding how the delivery of particularly grid services is precisely impacting the health and longevity of a battery system asset will be key to owners determining the most cost-effective deployment strategy for their investments.

 

Towards an evolution in battery technology

Altogether, Northvolt’s approach represents a significant departure from that taken by traditional battery cell manufacturers which, historically, have not engaged with data analytics in the manner envisioned by Northvolt. Indeed, Northvolt expects that its adoption of this new methodology will bring about a significant competitive edge.

 

That being the case, the implementation of these technologies will deliver strategic gains that extend well beyond optimizing battery usage and the associated benefits of this.

 

Earlier, Oscar noted the long-term applications of digitalization – a context where enhanced battery data insights will drive new innovation in battery manufacturing itself.

 

As Landon Mossburg, concludes: “Manufacturing data coupled with telemetry leads to unrivalled product intelligence with which we can fine-tune operations. But beyond this, we’re talking about the DNA of battery packs, and with that we’re able to begin manufacturing batteries with a whole new set of data-driven priorities.”

 

This is a topic to be picked up in part 2.