Archives for renewable energy

Hybrid and battery-powered ferries at Stena Line

A bridge to electrification of ferries is hybrid power – where a ferry is powered partially by batteries, but otherwise by conventional engines. It’s a solution that enables taking advantage of benefits of batteries, whilst overcoming some of their current challenges in powering larger systems.

 

Stena Line is one of Europe’s leading ferry companies and is pioneering battery hybrid technology as part of its ambitions to reduce its environmental footprint.

 

Northvolt spoke with Erik Lewenhaupt, Head of Sustainability at Stena Line, about the company’s initiatives to advance cleaner ferries.

 

“Driving Stena’s move towards clean power is sustainability, customer demand and coming regulation. Most of all we have a head owner who is intent on making a difference.”

 

“We believe that the future of sustainable marine transport will require a wide range of fuel solutions, but electricity is one important part, where the range of solutions will stretch between fully electric to hybrid.”

 

Noting that most of Stena’s ferry fleet is composed of larger vessels, Erik said: “Hybrid is the most likely solution with the battery technology we see today. However, we see business opportunities on shorter routes, where we have better use of the batteries.”

 

Stena’s ambitions have led to development of its flagship battery hybrid ferry, Jutlandica, which in October 2018 completed its first month of operation, operating on a route between Frederikshavn in Denmark and Gothenburg in Sweden with a sailing time of around 3 hours and 30 minutes.

 

 

With capacity for 1,500 passengers and 550 cars, Jutlandica is considerably larger than Norled’s Ampere in Norway – the world’s first fully-electric ferry which was highlighted in an earlier post ‘A revolution at sea – the challenges and opportunities of electrifying maritime industries’.

 

Erik described the Jutlandica’s 1 MWh battery power solution, saying: “The battery is based around lithium ion NMC chemistry, which is most suitable for our application. It’s a containerized solution from Callenberg/Corvus which is charged from shore when in port and through peak shaving from the auxiliary engines during sailing.”

 

“The battery can supply up to 3 MW instantaneously and reduces emissions and noise, as well provides a safety back-up. It has been very popular among our crew on-board.”

 

Presently, the battery system replaces one or two auxiliary engines when the Jutlandica is manoeuvring in port and is used for powering ventilation, heating and other systems on the vessel.

 

The environmental savings from this use of battery power to reduce generator usage amounts to approximately 500 tons of fuel saved and 1,500 tons of reduced CO2, corresponding to the annual emissions of around 600 cars.

 

 

But this is only step one in a three-step plan. A second step will see around 20 MWh battery power connected to two of the four primary machines, allowing Jutlandica to run on electrical power for about 10 nautical miles.

 

As for step three, Erik explained: “With step three, Stena will look towards connecting a larger battery system to all four primary machines of a vessel much like the Jutlandica. Rather than retrofit the Jutlandica, it’s likely that this step would involve a newbuild ship because of the larger capacity battery system that is required [around 50 MWh]. We expect the ship will be able to cover the 50 nautical miles between Sweden and Denmark.”

 

Erik adds to this future outlook, saying: “We aim to gradually increase the number of hybrid solutions similar to the one on Jutlandica, as well as their capacity. And to introduce Stena’s first fully electric ship by 2030.”

 

Considering our being in the early years of the electrification of ferries, the use of hybrid solutions is quite understandable. The approach extends the scope of ferry applications that battery systems can support, thereby allowing for significant reduction in ferry emissions. At the same time, it enables ferry operators and developers to test and evaluate battery performance in a stepwise approach.

 

Erik suggests that widespread deployment of fully electric ferries, certainly for larger ferries, requires further innovation.

 

“Development of these solutions is in early stages, and there are some challenges. Each ship and marine battery solution is unique and as such prices have been high. Battery weight and volume can also be a challenge if competing with cargo space. In general, lifecycle and cost of batteries are the two main challenges. Costs must come down to the same level as for the automotive industry.”

 

Looking forward, however, Erik’s outlook is optimistic. “As both the size and cost of batteries decrease, battery operation is becoming a very attractive alternative to traditional fuel for shipping, and in the long term it could be possible to completely eliminate emissions in the future.”

 

It’s worth noting that facilitating the deployment of electric ferries requires not only changes on ferries themselves, but also onshore investments at ports and harbours.

 

“Charging obviously needs to be quick as ferries are on a timetable, sometimes operating with a short turnaround,” said Erik.

 

For this, effective charging infrastructure is necessary – a circumstance that is mirrored in the very same situation seen with deployment of charging infrastructure for electric vehicles.

 

“And of course, electricity needs to be green and competitive compared to regular fuel,” Erik added.

Revolt: the technologies paving the way for Li-ion battery recycling

A sustainable approach from day 1

With the sustainability of industries high on the global agenda, the circumstances surrounding how products and solutions are manufactured and managed at end-of-life must be prioritized. It’s not enough that a solution simply serves a sustainable function through usage alone.

 

It’s through this lens that Northvolt approaches Li-ion batteries and is motivated to establish a robust European ecosystem for battery recycling.

 

Now at the beginning of the transition to battery powered electric vehicles, we are facing a change that carries consequences on societal, industrial and environmental levels.

 

That this industrial revolution is centered around Li-ion batteries, solutions whose manufacture both requires the extraction and use of Earth’s resources and significant amounts of energy, underscores the importance of its adopting a sustainable approach as early as possible.

 

The need is heightened further still by the fact that the forecasted demand for Li-ion cells is so great – as many as 250 million electric cars may be on the roads by 2030, according to IEA’s EV30@30 Scenario, up from around 5 million today.

 

As a battery manufacturer, Northvolt’s response to the situation is two-fold.

 

First, a commitment to utilizing clean energy and sustainable practices throughout manufacturing activities. And second, at the other end of battery lifetimes, delivery of effective solutions for battery recycling which maximize the return of valuable materials to their elemental form for reintroduction into supply chains.

 

We have to establish a new standard not only for manufacturing batteries, but how we recycle them too. Recycled Li-ion batteries will be an agent of change in the energy world and a critical piece of the puzzle in fulfilment of global sustainable development ambitions.

– Emma Nehrenheim, Chief Environmental Officer, Northvolt

 

Recycling can be challenging and this especially so in the case of recycling EV batteries – complex systems containing numerous valuable elements and materials. If done without care, recycling methods also have the potential to be more harmful for the environment than raw material extraction.

 

Fortunately, battery recycling isn’t without a solid foundation and there are established technologies to work with.

 

People might be surprised to learn that the vast majority of today’s Li-ion batteries are in fact recycled, and that this recycling is undertaken using effective technologies, producing large yields of high-quality material.

 

That said, the shift to EVs brings new challenges for battery recycling which must be handled at practical, technological and policy levels – issues presented in ‘Securing a robust European ecosystem for Li-ion battery recycling’.

 

Northvolt is establishing solutions for this future by refining recycling technologies and supporting effective market conditions for battery recycling in Europe.

 

 

What to recover

The manufacture of Li-ion batteries requires sourcing of raw materials, some of which are relatively rare. Li-ion batteries featuring NMC chemistry for instance, which Northvolt will produce, require as primary materials for active material the metal oxides nickel (Ni), cobalt (Co), lithium (Li) and manganese (Mn). Besides these, batteries also require other metals and plastics for various components including wiring, electronics and casings.

 

Of most interest are metals including copper, aluminum and steel, and active materials found in the electrodes which are of the highest value.

 

Most materials found in batteries can be recovered and recycled. And the intention of Northvolt’s recycling program is to maximize recovery of high-quality materials and to do so using methods which minimize the environmental footprint of recycling. Doing so will close the loop on battery manufacturing and lead to three key beneficial outcomes:

  • Reduction in consumption of raw (virgin) materials
  • Reduction in the environmental footprint of cells (and in effect EVs)
  • Support a new European economy

 

The recycling process

After collection and energy recovery through deep discharging, battery packs will be dismantled down to at least the module level. For this, we envision developing highly automated machinery, utilizing machine vision and smart software to identify battery pack models, thereby facilitating their disassembly and recycling.  

 

There are advantages to automation of recycling processes, including increasing efficiency and reducing costs. Automation will also be safer, reducing operator exposure to risks associated with the dismantling.   

 

Dismantling allows for steel casings, aluminum current collectors in the modules, copper bus bars and wiring, as well as plastics and other electronics, to be recovered for external recycling. 

 

Cells and modules will then be crushed in an inert environment, and electrolyte solvent evaporated 

 

The now crushed remaining material constituents are then sorted depending on mechanical properties such as density, size and magneticity. For this, air separators, sieves, and magnetic separators are usedand copper and aluminum are isolated for recycling. The remaining material, known as black mass, is then subjected to a hydrometallurgical process. 

 

 

 

 

Hydrometallurgy – commonly known as hydromet – involves dissolving metals in a solution containing sulfuric acid under optimized conditions. Impurities such as copper, iron, and aluminum are then removed using techniques including precipitation, solvent extraction and ionic exchange. 

 

Now free from impurities, the nickel, manganese and cobalt are recovered in one solution using solvent extraction. Although high-quality, this NMC solution isn’t necessarily immediately fit for being reintroduced into battery manufacturing and so concentration levels and ratios of the solution are adjusted accordingly.  

 

Finally, battery-grade lithium can be recovered from the remaining solution. 

 

Precise extraction rates vary metal to metal, but in general are very high. Melin (2019) highlights 20 published studies reporting an efficiency for lithium often at 100%, while nickel, cobalt and manganese generally have an efficiency between 80 and 99%. A recycling efficiency for other metals such as copper, aluminum and lithium, is typically between 90 and 100%. 

 

 

The hydromet process has several benefits compared to other recovery processes. One is that it enables recovery of high yields of high purity active materialsuitable for re-introduction into fresh battery production. Another is that this process does not require high temperatures, as opposed to pyrometallurgy. 

 

Altogether, a comprehensive recycling program, combined with implementation of effective recovery programs for EV batteries, are fundamental to a successful and sustainable battery-powered industrial revolution. The benefits of this approach go beyond sustainability though, and include delivery of a vibrant new industry reflective of the need for a conscientious approach to powering society.

Setting a new standard in digitalization of battery assets

The digital frontier

All battery customers are rightfully concerned for loss in battery power and energy through life and usage. Performance degradation is inherently par for the course with batteries, but with new approaches on the horizon the status quo isn’t something we are bound to.

 

By leveraging tools that define the state of the art in modern industry, including machine learning and artificial intelligence (AI), a digital infrastructure can be established that enhances battery performance, curtails degradation and extends operational lifespans.

 

Considered in its fuller sense, this digital approach goes further still – setting manufacturers up to work in a wholly new landscape, with a data-driven foundation enabling the fine-tuning and tailoring of future products from cell chemistry to system design.

 

Oscar Fors, Northvolt President, Battery Systems comments: “Batteries are often thought of as passive systems – we plug them in, and they provide power. But we see batteries as a far more dynamic asset. If you can properly understand them and develop the right tools to work with all the insights on offer, we can tap into batteries in a way never seen before.”

 

“It is here where we see substantial opportunity for improving the operational performance and lifetimes of batteries, and it’s driving an approach we’re calling Connected Batteries.”

 

Bringing Industry 4.0 to batteries

With electrification of industries where batteries are a new asset in play, users are not necessarily familiar with intricacies of operating and managing batteries. Since poor battery management is a sure road to battery degradation, the issue represents a challenge which must be overcome if we’re to fully exploit all that battery technology has to offer.

 

Fortunately, the situation is one that may be improved upon through a combination of intelligent data analytics, enhanced traceability and automation. Carefully applied, these technologies may yield far better lifetime management of battery assets than otherwise possible.

 

As is characteristic of Industry 4.0, the key to securing this goal rests in harnessing data. To this end, Northvolt is building telemetry and data collection into every aspect of its business and products.

 

Landon Mossburg, Northvolt Chief Automation Officer, explains: “Recognizing the dynamic nature of batteries and that increasing number of data points leads to far better basis for management and performance.”

 

“We’re moving beyond simply collecting current and temperature measurements. We want to know everything we can about batteries, from design and manufacture right through to operations and the ambient environment during deployment.”

 

Data collection at Northvolt begins with manufacturing, where virtually every process will be tracked. Subsequent to this, battery materials and components will be tagged with metadata so that their origins can be traced with specificity.

 

Once batteries are deployed, core parameters over which Northvolt is gathering battery performance data include temperature, state of health (SOH), state of charge (SOC), cooling system performance, electrical measurements, and usage metrics. This data is also supplemented with contextual information on where the asset is situated and how it’s being used.

 

At Northvolt, battery telemetry will be streamed to a secure facility where data will be evaluated by self-learning algorithms and intelligent systems. Customers will own their battery data, but in sharing it with Northvolt, substantial untapped value will be unlocked for them.

 

These systems will analyze battery telemetry data alongside all other data, for instance environmental and contextual information, and use the results to inform a range of diagnostics and subsequent operations to ensure that batteries deployed around the world are being used, charged, and treated as well as possible.


On the customer end, operators will have access to a Northvolt-built API app providing immediate, real-time insights. Here, simply scanning a QR code with a smartphone will allow for components and whole battery systems to be quickly identified. The data provided through the app will facilitate O&M, asset management, logistics and much more.

 

“Knowledge on how asset use influences the long-term nature of a battery and battery cell consumption lifespan will open up significant new ways for customers to work much more cost-effectively with batteries,” says Landon.

 

Inner workings of Connected Batteries

A core aspect to the Connected Batteries solution is machine learning enabled pattern detection. Once patterns are identified as being causally related to some aspect of battery performance, they can be used to develop optimized solutions and reactive measures. These can be pushed out over the wire to batteries and implemented through software/firmware.

 

Solutions could be implemented on individual batteries which are flagged for action, or across a relevant segment of all globally deployed batteries.

 

“This is not simply about collecting data but taking a proactive approach to implementing new protocols that enhance battery performance,” says Oscar.

 

“You can consider it a rule-based system: ‘If A and B, then execute C’. For instance, once a pattern is learnt, its subsequent detection can trigger a particular protocol to engage. That protocol, executed through the battery management system (BMS), may be a particular cooling pattern, or other adjustment.”

 

With this digital ecosystem of connected batteries, there is an envelope of some 10-20% in typical lifetime battery degradation in power and energy which Northvolt seek to reduce.

 

Applications

There are numerous circumstances where digitalization of batteries in ways outlined above will yield considerable advantages. At Northvolt, applications are considered across three timescales: immediate/operational, tactical and long-term strategic.

 

In the immediate context, systems will identify significant, potentially problematic, deviations from the norm or ideal envelop within which batteries should be operated. Alerting technicians to this, remedial action may be taken in real-time, beginning with contacting the battery owner/operator. The beauty of this is that diagnosis (and solutions) can be prepared in advance of dispatched technicians reaching the battery in question, thereby reducing asset downtime.

 

In the tactical timescale, Northvolt will evaluate patterns that will enable it to determine new, refined practices to optimize battery performance, for example adjusting BMS parameters in response to use profiles.

 

A short, simplified use-case illuminates how the system will function:

 

Imagine a mining vehicle, operating a hot-swap battery protocol (where a depleted battery is exchanged for a fresh, fully-charged one). Northvolt detects a pattern of repeated overcharging events and flags the battery. Subsequent analysis reveals the problem: the exchange of batteries is taking place at the top of the mine and precedes the vehicle’s descent down into the mine during which regenerative breaking is leading to over-charge of battery. The solution is a simple one: hot-swap at the bottom of mine, avoid over-charge and prolong the life of the battery.

 

Many more scenarios can be imagined too. For instance, ones relating to seasonal or weather-dependent charging considerations and the delivery of solutions involving compensating across appropriate parameters. Or solutions building off the idea that although optimal charge may typically be between 10-90%, situation-specific circumstances may prompt that being adjusted to 20-80%.

 

Across the long-term strategic scale, new insights on performance coupled with traceability (bringing fresh perspective on otherwise unknown manufacturing process variables) is envisioned to empower Northvolt with perspective to work at a whole new level of battery cell and system development and manufacture. (A topic dealt with in part 2.)

 

“This is a truly new area for battery R&D,” said Oscar. “With this kind of intelligence, we can tune operating parameters, adjust firmware, design cooling solutions customized to certain circumstances or better charging management software in response to particular charge profiles…the options are endless.”

 

Predictive maintenance & novel business models

Beyond improving battery performance, novel business cases and beneficial commercial practices emerge with the digitalization of batteries.

 

For instance, digital architecture for battery systems will enable Northvolt to predict with pinpoint accuracy when assets need to be serviced or replaced. There is every reason to expect that so-called predictive maintenance of this sort will be met with the same kinds of success as can be seen within other industries that have adopted the Industry 4.0 approach.

 

In turn, a consequence of these solutions taken together is new flexibility in how battery products are purchased. The doors open on the introduction of usage-based dynamic warranties which work in the favor of battery owners, and purchase agreements which recognize that customers will be operating within the best possible bounds of battery usage and care.

 

As Oscar says: “By providing owners with the tools to get the most from batteries we can substantially improve the value proposition of every business case – that’s good for us as a manufacturer concerned with encouraging battery-based electrification, and for our customers.”

 

These advantages exist irrespective of the use-case for battery systems, and most certainly extend to stationary battery storage system performance. With these systems, understanding how the delivery of particularly grid services is precisely impacting the health and longevity of a battery system asset will be key to owners determining the most cost-effective deployment strategy for their investments.

 

Towards an evolution in battery technology

Altogether, Northvolt’s approach represents a significant departure from that taken by traditional battery cell manufacturers which, historically, have not engaged with data analytics in the manner envisioned by Northvolt. Indeed, Northvolt expects that its adoption of this new methodology will bring about a significant competitive edge.

 

That being the case, the implementation of these technologies will deliver strategic gains that extend well beyond optimizing battery usage and the associated benefits of this.

 

Earlier, Oscar noted the long-term applications of digitalization – a context where enhanced battery data insights will drive new innovation in battery manufacturing itself.

 

As Landon Mossburg, concludes: “Manufacturing data coupled with telemetry leads to unrivalled product intelligence with which we can fine-tune operations. But beyond this, we’re talking about the DNA of battery packs, and with that we’re able to begin manufacturing batteries with a whole new set of data-driven priorities.”

 

This is a topic to be picked up in part 2.